FEMCI Conference

A Multi-Disciplinary Approach to Calculate Displacement Due to Random Vibration For A Space Based Focal Plane

Anthony J. Davenport Senior Mechanical Engineer Northrop Grumman, ESSS

Focal Plane Geometry

Filter (x6)

Cover

Flex Cable Strain Relief

Housing

So What Is The Problem?

- 1. Out of Plane Bowing from Cryogenic Loading
- 2. Random Vibration Displacement of the Cover
- 3. Lack of Material Properties (Adhesives)

Cover Filter

Housing Gap of Sensors
Concern

Focal Plane Cross-Section

Design & Analysis Path for the Focal Plane

Thermal Expansion Analysis Method

- Create a simplified model in PTC's Mechanica using mechanical properties determined by the NG materials group.
 - Run model between 295 °K to 110 °K (DT = 185 °K)
 - Examine relative displacement in the out-of-plane direction (Z)
- Compare results to testing completed in laboratory and correlate model.
- Apply what is learned to detailed model.

Simplified Test Model

Substrate Dial Gages (x3)

Adhesive

Molybdenum

Cold Finger With Heater Element

Temperature Sensors

Laboratory Test Setup

Three Dial Gages Touch
The Focal Plane in
3 Locations to Measure
Bowing in Focal Plane

Temperature Range 295 °K - 110 °K

Measuring Dials (x3)

Cold Finger & Heater

Focal Plane

¹/₄ Simplified Analysis Model

Symmetry Constraint, Y

Molybdenum

Constraint, Z on Bottom Curve

Substrate

Symmetry Constraint, X

Substrate Removed

Relative Displacement Results From Testing & Analysis

Analysis Model

		Displacement		
	Thickness	Trial #1	Trial #2	Average
Adhesive	[mil]	[mil	[mil]	[mil]
Α	5 +/- 0.1	-1.688	-1.413	-1.551
В	8 +/- 0.1	-0.775	-0.878	-0.827

Testing

		Displacement		
	Thickness	Minimum	Maximum	Relative
Adhesive	[mil]	[mil]	[mil]	[mil]
Α	5 +/- 0.1	-1.979	-0.424	-1.555
В	8 +/- 0.1	-2.895	-2.046	-0.849

Comparison

		Displacement		
	Thickness	Testing	Analysis	
Adhesive	[mil]	[mil]	[mil]	% Difference
Α	5 +/- 0.1	-1.551	-1.555	-0.29%
В	8 +/- 0.1	-0.827	-0.849	-2.72%

Detailed Analysis Model

Focal Plane Bows 5.3 mm, or +/- 2.6 mm Across a Mid-Plane

Ceramic Substrate

Mounting Surface Z Constraint

X,Y Constraint

Mounting Surface Z Constraint

Molybdenum

Uniform Temperature Load: Cure to Cryogenic (295 °K to 110 °K)

Random Vibration Derived Requirements

From Cryogenic Analysis

		Value
	Source	[in]
	Allowable (To Reduce Stray Light)	0.005
	R _{ss} 'd Value of SCA Stack-Up	-0.00225
•	Cryogenic Bowing	-0.0002
	Outer vs. Inner SCA Tolerance	-0.0005
	Allowable for Random Vibration Deflection	0.00205

Frequency	PSD Input	
[Hz]	[G ² /Hz]	
20	0.021	
50	0.282	
600	0.282	
2000	0.012	
Overall (G _{rms})	15.75	

Random Vibration Test Setup

Accelerometer	Direction	Description
1	Χ	Control for X
2	Υ	Control for Y
3	Z	Control for Z
4	Z	Control for Z
5	Z	Focal Plane Cover
6	Z	Focal Plane Housing

Test Setup

Focal Plane

Accelerometers

Test Results: Housing

Mode 2: 1717 Hz

Mode 1: 1513 Hz

39.3 G_{rms}

Testing Results: Cover

Mode 2: 1717 Hz

Mode 1: 1513 Hz

118.9 G_{rms}

What Can Be Derived From Test?

Damping Factors

Mode	Frequency [Hz]	PSD _{in} [G ² /Hz]	PSD _{out} [G ² /Hz]	Amplification Factor	Damping Factor
1	1513	0.019	10.55	23.6	0.02122
2	1717	0.016	193.2	109.9	0.00455

3s Absolute Displacement

	Displacement	
Channel	[mil]	Description
5	1.536	Cover
6	0.912	Housing
Sum	2.448	

Relative Displacement (500 Hz - 2000 Hz): 2.379 +/- mil Using Method Discussed in Appendix B (3% Diff.)

Method of Correlation

- Match the Frequency of the Test Model
 - Boundary Conditions
 - Mass of Components
 - Stiffness
 - Geometry
 - Material Properties
- Match the Displacement
 - Acceleration PSD Input
 - Damping Value: z = 1/(2Q)

Matching Frequency

Geometry: Built from Unigraphics Model

Boundary Conditions: Bolt Stiffness Applied

Mass from Tested Components

Materials: Varied Young's Modulus for Molybdenum within range found in multiple sources.

Aniso - View

Iso - View

Matching Frequency Results

Mode 1: 1477 Hz (2.4% Diff)

Mode 1: 1717 Hz (0.0% Diff)

Matching Displacement

- Adjust PSD Input to Match Testing.
 - Tolerance allowed for a +1 dB overall variance.
 - For a small response, this makes a large difference.
 - It was found that the PSD input was +0.4 dB higher than Specification.
- Adjust Damping to fine tune the model (z = 0.00351)
- 2.380 mil Deflection (0.042 % diff. from testing) for 500 - 2000 Hz.

Conclusions

- Bowing due to Thermal Expansion is determined by defining material properties via testing, modeling, and correlation.
- Cryogenic deflections help drive the random vibration allowable.
- Random vibration correlation helps in examining future changes to the focal plane design and it's inputs.

